Metamath Proof Explorer


Theorem eufid

Description: Utility theorem: index-independent form of df-euf . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Assertion eufid EuclF = Slot EuclF ndx

Proof

Step Hyp Ref Expression
1 df-euf EuclF = Slot 21
2 2nn0 2 0
3 1nn 1
4 2 3 decnncl 21
5 1 4 ndxid EuclF = Slot EuclF ndx