Metamath Proof Explorer


Definition df-euf

Description: Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025) Use its index-independent form eufid instead. (New usage is discouraged.)

Ref Expression
Assertion df-euf EuclF = Slot 21

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceuf class EuclF
1 c2 class 2
2 c1 class 1
3 1 2 cdc class 21
4 3 cslot class Slot 21
5 0 4 wceq wff EuclF = Slot 21