Metamath Proof Explorer


Definition df-euf

Description: Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025) Use its index-independent form eufid instead. (New usage is discouraged.)

Ref Expression
Assertion df-euf
|- EuclF = Slot ; 2 1

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceuf
 |-  EuclF
1 c2
 |-  2
2 c1
 |-  1
3 1 2 cdc
 |-  ; 2 1
4 3 cslot
 |-  Slot ; 2 1
5 0 4 wceq
 |-  EuclF = Slot ; 2 1