Metamath Proof Explorer


Theorem eufndx

Description: Index value of the Euclidean function slot. Use ndxarg . (Contributed by Thierry Arnoux, 22-Mar-2025) (New usage is discouraged.)

Ref Expression
Assertion eufndx
|- ( EuclF ` ndx ) = ; 2 1

Proof

Step Hyp Ref Expression
1 df-euf
 |-  EuclF = Slot ; 2 1
2 2nn0
 |-  2 e. NN0
3 1nn
 |-  1 e. NN
4 2 3 decnncl
 |-  ; 2 1 e. NN
5 1 4 ndxarg
 |-  ( EuclF ` ndx ) = ; 2 1