Metamath Proof Explorer


Theorem eupickbi

Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion eupickbi ∃!xφxφψxφψ

Proof

Step Hyp Ref Expression
1 eupicka ∃!xφxφψxφψ
2 1 ex ∃!xφxφψxφψ
3 euex ∃!xφxφ
4 exintr xφψxφxφψ
5 3 4 syl5com ∃!xφxφψxφψ
6 2 5 impbid ∃!xφxφψxφψ