Metamath Proof Explorer


Theorem eupthf1o

Description: The F function in an Eulerian path is a bijection from a half-open range of nonnegative integers to the set of edges. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Hypothesis eupths.i I=iEdgG
Assertion eupthf1o FEulerPathsGPF:0..^F1-1 ontodomI

Proof

Step Hyp Ref Expression
1 eupths.i I=iEdgG
2 1 eupthi FEulerPathsGPFWalksGPF:0..^F1-1 ontodomI
3 2 simprd FEulerPathsGPF:0..^F1-1 ontodomI