Metamath Proof Explorer


Theorem eupthi

Description: Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis eupths.i I=iEdgG
Assertion eupthi FEulerPathsGPFWalksGPF:0..^F1-1 ontodomI

Proof

Step Hyp Ref Expression
1 eupths.i I=iEdgG
2 1 iseupthf1o FEulerPathsGPFWalksGPF:0..^F1-1 ontodomI
3 2 biimpi FEulerPathsGPFWalksGPF:0..^F1-1 ontodomI