Metamath Proof Explorer


Theorem eupthistrl

Description: An Eulerian path is a trail. (Contributed by Alexander van der Vekens, 24-Nov-2017) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion eupthistrl FEulerPathsGPFTrailsGP

Proof

Step Hyp Ref Expression
1 eqid iEdgG=iEdgG
2 1 iseupth FEulerPathsGPFTrailsGPF:0..^FontodomiEdgG
3 2 simplbi FEulerPathsGPFTrailsGP