Metamath Proof Explorer


Theorem eusv4

Description: Two ways to express single-valuedness of a class expression B ( y ) . (Contributed by NM, 27-Oct-2010)

Ref Expression
Hypothesis eusv4.1 BV
Assertion eusv4 ∃!xyAx=B∃!xyAx=B

Proof

Step Hyp Ref Expression
1 eusv4.1 BV
2 reusv2lem3 yABV∃!xyAx=B∃!xyAx=B
3 1 a1i yABV
4 2 3 mprg ∃!xyAx=B∃!xyAx=B