Metamath Proof Explorer


Theorem eusvobj1

Description: Specify the same object in two ways when class B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypothesis eusvobj1.1 BV
Assertion eusvobj1 ∃!xyAx=Bιx|yAx=B=ιx|yAx=B

Proof

Step Hyp Ref Expression
1 eusvobj1.1 BV
2 nfeu1 x∃!xyAx=B
3 1 eusvobj2 ∃!xyAx=ByAx=ByAx=B
4 2 3 alrimi ∃!xyAx=BxyAx=ByAx=B
5 iotabi xyAx=ByAx=Bιx|yAx=B=ιx|yAx=B
6 4 5 syl ∃!xyAx=Bιx|yAx=B=ιx|yAx=B