Metamath Proof Explorer


Theorem evpmval

Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023)

Ref Expression
Hypothesis evpmval.1 A=pmEvenD
Assertion evpmval DVA=pmSgnD-11

Proof

Step Hyp Ref Expression
1 evpmval.1 A=pmEvenD
2 elex DVDV
3 fveq2 d=DpmSgnd=pmSgnD
4 3 cnveqd d=DpmSgnd-1=pmSgnD-1
5 4 imaeq1d d=DpmSgnd-11=pmSgnD-11
6 df-evpm pmEven=dVpmSgnd-11
7 fvex pmSgnDV
8 7 cnvex pmSgnD-1V
9 8 imaex pmSgnD-11V
10 5 6 9 fvmpt DVpmEvenD=pmSgnD-11
11 2 10 syl DVpmEvenD=pmSgnD-11
12 1 11 eqtrid DVA=pmSgnD-11