Metamath Proof Explorer


Theorem ex-xp

Description: Example for df-xp . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-xp 15×27=12175257

Proof

Step Hyp Ref Expression
1 df-pr 15=15
2 df-pr 27=27
3 1 2 xpeq12i 15×27=15×27
4 xpun 15×27=1×21×75×25×7
5 1ex 1V
6 2nn 2
7 6 elexi 2V
8 5 7 xpsn 1×2=12
9 7nn 7
10 9 elexi 7V
11 5 10 xpsn 1×7=17
12 8 11 uneq12i 1×21×7=1217
13 df-pr 1217=1217
14 12 13 eqtr4i 1×21×7=1217
15 5nn 5
16 15 elexi 5V
17 16 7 xpsn 5×2=52
18 16 10 xpsn 5×7=57
19 17 18 uneq12i 5×25×7=5257
20 df-pr 5257=5257
21 19 20 eqtr4i 5×25×7=5257
22 14 21 uneq12i 1×21×75×25×7=12175257
23 3 4 22 3eqtri 15×27=12175257