Metamath Proof Explorer


Theorem f1oeq3d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq3d.1 φA=B
Assertion f1oeq3d φF:C1-1 ontoAF:C1-1 ontoB

Proof

Step Hyp Ref Expression
1 f1oeq3d.1 φA=B
2 f1oeq3 A=BF:C1-1 ontoAF:C1-1 ontoB
3 1 2 syl φF:C1-1 ontoAF:C1-1 ontoB