Metamath Proof Explorer


Theorem f1olecpbl

Description: An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypothesis f1ocpbl.f φF:V1-1 ontoX
Assertion f1olecpbl φAVBVCVDVFA=FCFB=FDANBCND

Proof

Step Hyp Ref Expression
1 f1ocpbl.f φF:V1-1 ontoX
2 1 f1ocpbllem φAVBVCVDVFA=FCFB=FDA=CB=D
3 breq12 A=CB=DANBCND
4 2 3 syl6bi φAVBVCVDVFA=FCFB=FDANBCND