Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1rel
Next ⟩
f1dm
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1rel
Description:
A one-to-one onto mapping is a relation.
(Contributed by
NM
, 8-Mar-2014)
Ref
Expression
Assertion
f1rel
⊢
F
:
A
⟶
1-1
B
→
Rel
⁡
F
Proof
Step
Hyp
Ref
Expression
1
f1fn
⊢
F
:
A
⟶
1-1
B
→
F
Fn
A
2
fnrel
⊢
F
Fn
A
→
Rel
⁡
F
3
1
2
syl
⊢
F
:
A
⟶
1-1
B
→
Rel
⁡
F