Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ffvelrni
Next ⟩
ffvelrnda
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffvelrni
Description:
A function's value belongs to its codomain.
(Contributed by
NM
, 6-Apr-2005)
Ref
Expression
Hypothesis
ffvrni.1
⊢
F
:
A
⟶
B
Assertion
ffvelrni
⊢
C
∈
A
→
F
⁡
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
ffvrni.1
⊢
F
:
A
⟶
B
2
ffvelrn
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
∈
B
3
1
2
mpan
⊢
C
∈
A
→
F
⁡
C
∈
B