Metamath Proof Explorer


Theorem ffvelrni

Description: A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005)

Ref Expression
Hypothesis ffvrni.1 𝐹 : 𝐴𝐵
Assertion ffvelrni ( 𝐶𝐴 → ( 𝐹𝐶 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ffvrni.1 𝐹 : 𝐴𝐵
2 ffvelrn ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐵 )
3 1 2 mpan ( 𝐶𝐴 → ( 𝐹𝐶 ) ∈ 𝐵 )