Metamath Proof Explorer


Theorem fldcrng

Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Assertion fldcrng K Fld K CRingOps

Proof

Step Hyp Ref Expression
1 eqid 1 st K = 1 st K
2 eqid 2 nd K = 2 nd K
3 eqid ran 1 st K = ran 1 st K
4 eqid GId 1 st K = GId 1 st K
5 1 2 3 4 drngoi K DivRingOps K RingOps 2 nd K ran 1 st K GId 1 st K × ran 1 st K GId 1 st K GrpOp
6 5 simpld K DivRingOps K RingOps
7 6 anim1i K DivRingOps K Com2 K RingOps K Com2
8 df-fld Fld = DivRingOps Com2
9 8 elin2 K Fld K DivRingOps K Com2
10 iscrngo K CRingOps K RingOps K Com2
11 7 9 10 3imtr4i K Fld K CRingOps