Metamath Proof Explorer


Theorem fmptsnxp

Description: Maps-to notation and Cartesian product for a singleton function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion fmptsnxp AVBWxAB=A×B

Proof

Step Hyp Ref Expression
1 xpsng AVBWA×B=AB
2 fmptsn AVBWAB=xAB
3 1 2 eqtr2d AVBWxAB=A×B