Description: Lemma 2 for fmtno5fac . (Contributed by AV, 22-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtno5faclem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 | ||
2 | 7nn0 | ||
3 | 1 2 | deccl | |
4 | 0nn0 | ||
5 | 3 4 | deccl | |
6 | 5 4 | deccl | |
7 | 4nn0 | ||
8 | 6 7 | deccl | |
9 | 1nn0 | ||
10 | 8 9 | deccl | |
11 | eqid | ||
12 | 2nn0 | ||
13 | 7 4 | deccl | |
14 | 13 12 | deccl | |
15 | 14 4 | deccl | |
16 | 15 12 | deccl | |
17 | 16 7 | deccl | |
18 | eqid | ||
19 | eqid | ||
20 | eqid | ||
21 | eqid | ||
22 | eqid | ||
23 | 3nn0 | ||
24 | 6t6e36 | ||
25 | 3p1e4 | ||
26 | 6p4e10 | ||
27 | 23 1 7 24 25 26 | decaddci2 | |
28 | 7t6e42 | ||
29 | 1 1 2 22 12 7 27 28 | decmul1c | |
30 | 6cn | ||
31 | 30 | mul02i | |
32 | 1 3 4 21 29 31 | decmul1 | |
33 | 1 5 4 20 32 31 | decmul1 | |
34 | 2cn | ||
35 | 34 | addid2i | |
36 | 15 4 12 33 35 | decaddi | |
37 | 4cn | ||
38 | 6t4e24 | ||
39 | 30 37 38 | mulcomli | |
40 | 1 6 7 19 7 12 36 39 | decmul1c | |
41 | 30 | mulid2i | |
42 | 1 8 9 18 40 41 | decmul1 | |
43 | eqid | ||
44 | 4p1e5 | ||
45 | 16 7 9 43 44 | decaddi | |
46 | 17 1 7 42 45 26 | decaddci2 | |
47 | 1 10 2 11 12 7 46 28 | decmul1c |