Metamath Proof Explorer


Theorem fmtno5faclem2

Description: Lemma 2 for fmtno5fac . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5faclem2 67004176=40202502

Proof

Step Hyp Ref Expression
1 6nn0 60
2 7nn0 70
3 1 2 deccl 670
4 0nn0 00
5 3 4 deccl 6700
6 5 4 deccl 67000
7 4nn0 40
8 6 7 deccl 670040
9 1nn0 10
10 8 9 deccl 6700410
11 eqid 6700417=6700417
12 2nn0 20
13 7 4 deccl 400
14 13 12 deccl 4020
15 14 4 deccl 40200
16 15 12 deccl 402020
17 16 7 deccl 4020240
18 eqid 670041=670041
19 eqid 67004=67004
20 eqid 6700=6700
21 eqid 670=670
22 eqid 67=67
23 3nn0 30
24 6t6e36 66=36
25 3p1e4 3+1=4
26 6p4e10 6+4=10
27 23 1 7 24 25 26 decaddci2 66+4=40
28 7t6e42 76=42
29 1 1 2 22 12 7 27 28 decmul1c 676=402
30 6cn 6
31 30 mul02i 06=0
32 1 3 4 21 29 31 decmul1 6706=4020
33 1 5 4 20 32 31 decmul1 67006=40200
34 2cn 2
35 34 addlidi 0+2=2
36 15 4 12 33 35 decaddi 67006+2=40202
37 4cn 4
38 6t4e24 64=24
39 30 37 38 mulcomli 46=24
40 1 6 7 19 7 12 36 39 decmul1c 670046=402024
41 30 mullidi 16=6
42 1 8 9 18 40 41 decmul1 6700416=4020246
43 eqid 402024=402024
44 4p1e5 4+1=5
45 16 7 9 43 44 decaddi 402024+1=402025
46 17 1 7 42 45 26 decaddci2 6700416+4=4020250
47 1 10 2 11 12 7 46 28 decmul1c 67004176=40202502