Metamath Proof Explorer


Theorem fmtno5faclem2

Description: Lemma 2 for fmtno5fac . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5faclem2 6700417 6 = 40202502

Proof

Step Hyp Ref Expression
1 6nn0 6 0
2 7nn0 7 0
3 1 2 deccl 67 0
4 0nn0 0 0
5 3 4 deccl 670 0
6 5 4 deccl 6700 0
7 4nn0 4 0
8 6 7 deccl 67004 0
9 1nn0 1 0
10 8 9 deccl 670041 0
11 eqid 6700417 = 6700417
12 2nn0 2 0
13 7 4 deccl 40 0
14 13 12 deccl 402 0
15 14 4 deccl 4020 0
16 15 12 deccl 40202 0
17 16 7 deccl 402024 0
18 eqid 670041 = 670041
19 eqid 67004 = 67004
20 eqid 6700 = 6700
21 eqid 670 = 670
22 eqid 67 = 67
23 3nn0 3 0
24 6t6e36 6 6 = 36
25 3p1e4 3 + 1 = 4
26 6p4e10 6 + 4 = 10
27 23 1 7 24 25 26 decaddci2 6 6 + 4 = 40
28 7t6e42 7 6 = 42
29 1 1 2 22 12 7 27 28 decmul1c 67 6 = 402
30 6cn 6
31 30 mul02i 0 6 = 0
32 1 3 4 21 29 31 decmul1 670 6 = 4020
33 1 5 4 20 32 31 decmul1 6700 6 = 40200
34 2cn 2
35 34 addid2i 0 + 2 = 2
36 15 4 12 33 35 decaddi 6700 6 + 2 = 40202
37 4cn 4
38 6t4e24 6 4 = 24
39 30 37 38 mulcomli 4 6 = 24
40 1 6 7 19 7 12 36 39 decmul1c 67004 6 = 402024
41 30 mulid2i 1 6 = 6
42 1 8 9 18 40 41 decmul1 670041 6 = 4020246
43 eqid 402024 = 402024
44 4p1e5 4 + 1 = 5
45 16 7 9 43 44 decaddi 402024 + 1 = 402025
46 17 1 7 42 45 26 decaddci2 670041 6 + 4 = 4020250
47 1 10 2 11 12 7 46 28 decmul1c 6700417 6 = 40202502