Metamath Proof Explorer


Theorem fnoa

Description: Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fnoa +𝑜FnOn×On

Proof

Step Hyp Ref Expression
1 df-oadd +𝑜=xOn,yOnreczVsuczxy
2 fvex reczVsuczxyV
3 1 2 fnmpoi +𝑜FnOn×On