Metamath Proof Explorer


Theorem fodom

Description: An onto function implies dominance of domain over range. (Contributed by NM, 23-Jul-2004)

Ref Expression
Hypothesis fodom.1 AV
Assertion fodom F:AontoBBA

Proof

Step Hyp Ref Expression
1 fodom.1 AV
2 fodomg AVF:AontoBBA
3 1 2 ax-mp F:AontoBBA