Metamath Proof Explorer


Theorem dmct

Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion dmct A ω dom A ω

Proof

Step Hyp Ref Expression
1 dmresv dom A V = dom A
2 resss A V A
3 ctex A ω A V
4 ssexg A V A A V A V V
5 2 3 4 sylancr A ω A V V
6 fvex 1 st x V
7 eqid x A V 1 st x = x A V 1 st x
8 6 7 fnmpti x A V 1 st x Fn A V
9 dffn4 x A V 1 st x Fn A V x A V 1 st x : A V onto ran x A V 1 st x
10 8 9 mpbi x A V 1 st x : A V onto ran x A V 1 st x
11 relres Rel A V
12 reldm Rel A V dom A V = ran x A V 1 st x
13 foeq3 dom A V = ran x A V 1 st x x A V 1 st x : A V onto dom A V x A V 1 st x : A V onto ran x A V 1 st x
14 11 12 13 mp2b x A V 1 st x : A V onto dom A V x A V 1 st x : A V onto ran x A V 1 st x
15 10 14 mpbir x A V 1 st x : A V onto dom A V
16 fodomg A V V x A V 1 st x : A V onto dom A V dom A V A V
17 5 15 16 mpisyl A ω dom A V A V
18 ssdomg A V A V A A V A
19 3 2 18 mpisyl A ω A V A
20 domtr A V A A ω A V ω
21 19 20 mpancom A ω A V ω
22 domtr dom A V A V A V ω dom A V ω
23 17 21 22 syl2anc A ω dom A V ω
24 1 23 eqbrtrrid A ω dom A ω