Step |
Hyp |
Ref |
Expression |
1 |
|
dmresv |
⊢ dom ( 𝐴 ↾ V ) = dom 𝐴 |
2 |
|
resss |
⊢ ( 𝐴 ↾ V ) ⊆ 𝐴 |
3 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
4 |
|
ssexg |
⊢ ( ( ( 𝐴 ↾ V ) ⊆ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ↾ V ) ∈ V ) |
5 |
2 3 4
|
sylancr |
⊢ ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ∈ V ) |
6 |
|
fvex |
⊢ ( 1st ‘ 𝑥 ) ∈ V |
7 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) |
8 |
6 7
|
fnmpti |
⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) Fn ( 𝐴 ↾ V ) |
9 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) Fn ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) |
10 |
8 9
|
mpbi |
⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) |
11 |
|
relres |
⊢ Rel ( 𝐴 ↾ V ) |
12 |
|
reldm |
⊢ ( Rel ( 𝐴 ↾ V ) → dom ( 𝐴 ↾ V ) = ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) |
13 |
|
foeq3 |
⊢ ( dom ( 𝐴 ↾ V ) = ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) → ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) ) |
14 |
11 12 13
|
mp2b |
⊢ ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) |
15 |
10 14
|
mpbir |
⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) |
16 |
|
fodomg |
⊢ ( ( 𝐴 ↾ V ) ∈ V → ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) → dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ) ) |
17 |
5 15 16
|
mpisyl |
⊢ ( 𝐴 ≼ ω → dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ) |
18 |
|
ssdomg |
⊢ ( 𝐴 ∈ V → ( ( 𝐴 ↾ V ) ⊆ 𝐴 → ( 𝐴 ↾ V ) ≼ 𝐴 ) ) |
19 |
3 2 18
|
mpisyl |
⊢ ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ≼ 𝐴 ) |
20 |
|
domtr |
⊢ ( ( ( 𝐴 ↾ V ) ≼ 𝐴 ∧ 𝐴 ≼ ω ) → ( 𝐴 ↾ V ) ≼ ω ) |
21 |
19 20
|
mpancom |
⊢ ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ≼ ω ) |
22 |
|
domtr |
⊢ ( ( dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ∧ ( 𝐴 ↾ V ) ≼ ω ) → dom ( 𝐴 ↾ V ) ≼ ω ) |
23 |
17 21 22
|
syl2anc |
⊢ ( 𝐴 ≼ ω → dom ( 𝐴 ↾ V ) ≼ ω ) |
24 |
1 23
|
eqbrtrrid |
⊢ ( 𝐴 ≼ ω → dom 𝐴 ≼ ω ) |