Metamath Proof Explorer


Theorem dmct

Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion dmct ( 𝐴 ≼ ω → dom 𝐴 ≼ ω )

Proof

Step Hyp Ref Expression
1 dmresv dom ( 𝐴 ↾ V ) = dom 𝐴
2 resss ( 𝐴 ↾ V ) ⊆ 𝐴
3 ctex ( 𝐴 ≼ ω → 𝐴 ∈ V )
4 ssexg ( ( ( 𝐴 ↾ V ) ⊆ 𝐴𝐴 ∈ V ) → ( 𝐴 ↾ V ) ∈ V )
5 2 3 4 sylancr ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ∈ V )
6 fvex ( 1st𝑥 ) ∈ V
7 eqid ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) )
8 6 7 fnmpti ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) Fn ( 𝐴 ↾ V )
9 dffn4 ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) Fn ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) )
10 8 9 mpbi ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) )
11 relres Rel ( 𝐴 ↾ V )
12 reldm ( Rel ( 𝐴 ↾ V ) → dom ( 𝐴 ↾ V ) = ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) )
13 foeq3 ( dom ( 𝐴 ↾ V ) = ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) → ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) ) )
14 11 12 13 mp2b ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) )
15 10 14 mpbir ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V )
16 fodomg ( ( 𝐴 ↾ V ) ∈ V → ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) → dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ) )
17 5 15 16 mpisyl ( 𝐴 ≼ ω → dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) )
18 ssdomg ( 𝐴 ∈ V → ( ( 𝐴 ↾ V ) ⊆ 𝐴 → ( 𝐴 ↾ V ) ≼ 𝐴 ) )
19 3 2 18 mpisyl ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ≼ 𝐴 )
20 domtr ( ( ( 𝐴 ↾ V ) ≼ 𝐴𝐴 ≼ ω ) → ( 𝐴 ↾ V ) ≼ ω )
21 19 20 mpancom ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ≼ ω )
22 domtr ( ( dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ∧ ( 𝐴 ↾ V ) ≼ ω ) → dom ( 𝐴 ↾ V ) ≼ ω )
23 17 21 22 syl2anc ( 𝐴 ≼ ω → dom ( 𝐴 ↾ V ) ≼ ω )
24 1 23 eqbrtrrid ( 𝐴 ≼ ω → dom 𝐴 ≼ ω )