Metamath Proof Explorer


Theorem frege108

Description: If Y belongs to the R -sequence beginning with Z , then every result of an application of the procedure R to Y belongs to the R -sequence beginning with Z . Proposition 108 of Frege1879 p. 74. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege108.z Z A
frege108.y Y B
frege108.v V C
frege108.r R D
Assertion frege108 Z t+ R I Y Y R V Z t+ R I V

Proof

Step Hyp Ref Expression
1 frege108.z Z A
2 frege108.y Y B
3 frege108.v V C
4 frege108.r R D
5 1 2 3 4 frege102 Z t+ R I Y Y R V Z t+ R V
6 3 frege107 Z t+ R I Y Y R V Z t+ R V Z t+ R I Y Y R V Z t+ R I V
7 5 6 ax-mp Z t+ R I Y Y R V Z t+ R I V