Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Member of sequence
frege108
Metamath Proof Explorer
Description: If Y belongs to the R -sequence beginning with Z , then
every result of an application of the procedure R to Y belongs
to the R -sequence beginning with Z . Proposition 108 of
Frege1879 p. 74. (Contributed by RP , 7-Jul-2020)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
frege108.z
⊢ Z ∈ A
frege108.y
⊢ Y ∈ B
frege108.v
⊢ V ∈ C
frege108.r
⊢ R ∈ D
Assertion
frege108
⊢ Z t+ ⁡ R ∪ I Y → Y R V → Z t+ ⁡ R ∪ I V
Proof
Step
Hyp
Ref
Expression
1
frege108.z
⊢ Z ∈ A
2
frege108.y
⊢ Y ∈ B
3
frege108.v
⊢ V ∈ C
4
frege108.r
⊢ R ∈ D
5
1 2 3 4
frege102
⊢ Z t+ ⁡ R ∪ I Y → Y R V → Z t+ ⁡ R V
6
3
frege107
⊢ Z t+ ⁡ R ∪ I Y → Y R V → Z t+ ⁡ R V → Z t+ ⁡ R ∪ I Y → Y R V → Z t+ ⁡ R ∪ I V
7
5 6
ax-mp
⊢ Z t+ ⁡ R ∪ I Y → Y R V → Z t+ ⁡ R ∪ I V