Metamath Proof Explorer


Theorem frege18

Description: Closed form of a syllogism followed by a swap of antecedents. Proposition 18 of Frege1879 p. 39. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege18 φ ψ χ θ φ ψ θ χ

Proof

Step Hyp Ref Expression
1 frege5 φ ψ χ θ φ θ ψ χ
2 frege16 φ ψ χ θ φ θ ψ χ φ ψ χ θ φ ψ θ χ
3 1 2 ax-mp φ ψ χ θ φ ψ θ χ