Metamath Proof Explorer


Theorem frege60c

Description: Swap antecedents of frege58c . Proposition 60 of Frege1879 p. 52. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a AB
Assertion frege60c xφψχ[˙A/x]˙ψ[˙A/x]˙φ[˙A/x]˙χ

Proof

Step Hyp Ref Expression
1 frege59c.a AB
2 1 frege58c xφψχ[˙A/x]˙φψχ
3 sbcim1 [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψχ
4 sbcim1 [˙A/x]˙ψχ[˙A/x]˙ψ[˙A/x]˙χ
5 3 4 syl6 [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
6 2 5 syl xφψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
7 frege12 xφψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χxφψχ[˙A/x]˙ψ[˙A/x]˙φ[˙A/x]˙χ
8 6 7 ax-mp xφψχ[˙A/x]˙ψ[˙A/x]˙φ[˙A/x]˙χ