Step |
Hyp |
Ref |
Expression |
1 |
|
frege59c.a |
|- A e. B |
2 |
1
|
frege58c |
|- ( A. x ( ph -> ( ps -> ch ) ) -> [. A / x ]. ( ph -> ( ps -> ch ) ) ) |
3 |
|
sbcim1 |
|- ( [. A / x ]. ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) |
4 |
|
sbcim1 |
|- ( [. A / x ]. ( ps -> ch ) -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) |
5 |
3 4
|
syl6 |
|- ( [. A / x ]. ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) |
6 |
2 5
|
syl |
|- ( A. x ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) |
7 |
|
frege12 |
|- ( ( A. x ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) -> ( A. x ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ps -> ( [. A / x ]. ph -> [. A / x ]. ch ) ) ) ) |
8 |
6 7
|
ax-mp |
|- ( A. x ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ps -> ( [. A / x ]. ph -> [. A / x ]. ch ) ) ) |