Metamath Proof Explorer


Theorem frege61c

Description: Lemma for frege65c . Proposition 61 of Frege1879 p. 52. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a
|- A e. B
Assertion frege61c
|- ( ( [. A / x ]. ph -> ps ) -> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 frege59c.a
 |-  A e. B
2 1 frege58c
 |-  ( A. x ph -> [. A / x ]. ph )
3 frege9
 |-  ( ( A. x ph -> [. A / x ]. ph ) -> ( ( [. A / x ]. ph -> ps ) -> ( A. x ph -> ps ) ) )
4 2 3 ax-mp
 |-  ( ( [. A / x ]. ph -> ps ) -> ( A. x ph -> ps ) )