Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Properties hereditary in a sequence
frege71
Metamath Proof Explorer
Description: Lemma for frege72 . Proposition 71 of Frege1879 p. 59.
(Contributed by RP , 28-Mar-2020) (Revised by RP , 3-Jul-2020)
(Proof modification is discouraged.)
Ref
Expression
Hypothesis
frege71.x
⊢ X ∈ V
Assertion
frege71
⊢ ∀ z X R z → z ∈ A → X R Y → Y ∈ A → R hereditary A → X ∈ A → X R Y → Y ∈ A
Proof
Step
Hyp
Ref
Expression
1
frege71.x
⊢ X ∈ V
2
1
frege70
⊢ R hereditary A → X ∈ A → ∀ z X R z → z ∈ A
3
frege19
⊢ R hereditary A → X ∈ A → ∀ z X R z → z ∈ A → ∀ z X R z → z ∈ A → X R Y → Y ∈ A → R hereditary A → X ∈ A → X R Y → Y ∈ A
4
2 3
ax-mp
⊢ ∀ z X R z → z ∈ A → X R Y → Y ∈ A → R hereditary A → X ∈ A → X R Y → Y ∈ A