Metamath Proof Explorer


Theorem frege71

Description: Lemma for frege72 . Proposition 71 of Frege1879 p. 59. (Contributed by RP, 28-Mar-2020) (Revised by RP, 3-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege71.x 𝑋𝑉
Assertion frege71 ( ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) → ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege71.x 𝑋𝑉
2 1 frege70 ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) ) )
3 frege19 ( ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) ) ) → ( ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) → ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) ) ) )
4 2 3 ax-mp ( ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) → ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) ) )