| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege70.x |
⊢ 𝑋 ∈ 𝑉 |
| 2 |
|
dffrege69 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ↔ 𝑅 hereditary 𝐴 ) |
| 3 |
1
|
frege68c |
⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ↔ 𝑅 hereditary 𝐴 ) → ( 𝑅 hereditary 𝐴 → [ 𝑋 / 𝑥 ] ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ) ) |
| 4 |
|
sbcel1v |
⊢ ( [ 𝑋 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) |
| 5 |
4
|
biimpri |
⊢ ( 𝑋 ∈ 𝐴 → [ 𝑋 / 𝑥 ] 𝑥 ∈ 𝐴 ) |
| 6 |
|
sbcim1 |
⊢ ( [ 𝑋 / 𝑥 ] ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) → ( [ 𝑋 / 𝑥 ] 𝑥 ∈ 𝐴 → [ 𝑋 / 𝑥 ] ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ) |
| 7 |
|
sbcal |
⊢ ( [ 𝑋 / 𝑥 ] ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 [ 𝑋 / 𝑥 ] ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) |
| 8 |
|
sbcim1 |
⊢ ( [ 𝑋 / 𝑥 ] ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) → ( [ 𝑋 / 𝑥 ] 𝑥 𝑅 𝑦 → [ 𝑋 / 𝑥 ] 𝑦 ∈ 𝐴 ) ) |
| 9 |
|
sbcbr1g |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] 𝑥 𝑅 𝑦 ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝑥 𝑅 𝑦 ) ) |
| 10 |
1 9
|
ax-mp |
⊢ ( [ 𝑋 / 𝑥 ] 𝑥 𝑅 𝑦 ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝑥 𝑅 𝑦 ) |
| 11 |
|
csbvarg |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑥 ⦌ 𝑥 = 𝑋 ) |
| 12 |
1 11
|
ax-mp |
⊢ ⦋ 𝑋 / 𝑥 ⦌ 𝑥 = 𝑋 |
| 13 |
12
|
breq1i |
⊢ ( ⦋ 𝑋 / 𝑥 ⦌ 𝑥 𝑅 𝑦 ↔ 𝑋 𝑅 𝑦 ) |
| 14 |
10 13
|
bitri |
⊢ ( [ 𝑋 / 𝑥 ] 𝑥 𝑅 𝑦 ↔ 𝑋 𝑅 𝑦 ) |
| 15 |
|
sbcg |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 16 |
1 15
|
ax-mp |
⊢ ( [ 𝑋 / 𝑥 ] 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
| 17 |
8 14 16
|
3imtr3g |
⊢ ( [ 𝑋 / 𝑥 ] ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) |
| 18 |
17
|
alimi |
⊢ ( ∀ 𝑦 [ 𝑋 / 𝑥 ] ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑋 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) |
| 19 |
7 18
|
sylbi |
⊢ ( [ 𝑋 / 𝑥 ] ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑋 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) |
| 20 |
5 6 19
|
syl56 |
⊢ ( [ 𝑋 / 𝑥 ] ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) → ( 𝑋 ∈ 𝐴 → ∀ 𝑦 ( 𝑋 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ) |
| 21 |
3 20
|
syl6 |
⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ↔ 𝑅 hereditary 𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝑋 ∈ 𝐴 → ∀ 𝑦 ( 𝑋 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ) ) |
| 22 |
2 21
|
ax-mp |
⊢ ( 𝑅 hereditary 𝐴 → ( 𝑋 ∈ 𝐴 → ∀ 𝑦 ( 𝑋 𝑅 𝑦 → 𝑦 ∈ 𝐴 ) ) ) |