Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frege59c.a | ⊢ 𝐴 ∈ 𝐵 | |
| Assertion | frege68c | ⊢ ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege59c.a | ⊢ 𝐴 ∈ 𝐵 | |
| 2 | frege57aid | ⊢ ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) | |
| 3 | 1 | frege67c | ⊢ ( ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 4 | 2 3 | ax-mp | ⊢ ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |