Metamath Proof Explorer


Theorem frege68c

Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a
|- A e. B
Assertion frege68c
|- ( ( A. x ph <-> ps ) -> ( ps -> [. A / x ]. ph ) )

Proof

Step Hyp Ref Expression
1 frege59c.a
 |-  A e. B
2 frege57aid
 |-  ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) )
3 1 frege67c
 |-  ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [. A / x ]. ph ) ) )
4 2 3 ax-mp
 |-  ( ( A. x ph <-> ps ) -> ( ps -> [. A / x ]. ph ) )