Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frege59c.a | |- A e. B |
|
Assertion | frege68c | |- ( ( A. x ph <-> ps ) -> ( ps -> [. A / x ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | |- A e. B |
|
2 | frege57aid | |- ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) |
|
3 | 1 | frege67c | |- ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [. A / x ]. ph ) ) ) |
4 | 2 3 | ax-mp | |- ( ( A. x ph <-> ps ) -> ( ps -> [. A / x ]. ph ) ) |