Metamath Proof Explorer


Theorem frege67c

Description: Lemma for frege68c . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a 𝐴𝐵
Assertion frege67c ( ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓[ 𝐴 / 𝑥 ] 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 frege59c.a 𝐴𝐵
2 1 frege58c ( ∀ 𝑥 𝜑[ 𝐴 / 𝑥 ] 𝜑 )
3 frege7 ( ( ∀ 𝑥 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) → ( ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓[ 𝐴 / 𝑥 ] 𝜑 ) ) ) )
4 2 3 ax-mp ( ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓[ 𝐴 / 𝑥 ] 𝜑 ) ) )