Description: Principle related to sp . Axiom 58 of Frege1879 p. 51. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frege58c.a | ⊢ 𝐴 ∈ 𝐵 | |
| Assertion | frege58c | ⊢ ( ∀ 𝑥 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege58c.a | ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ax-frege58b | ⊢ ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 3 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | 2 3 | sylib | ⊢ ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) |
| 5 | dfsbcq | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 6 | 4 5 | imbitrid | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 7 | 6 | vtocleg | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 8 | 1 7 | ax-mp | ⊢ ( ∀ 𝑥 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) |