| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege72.x |
⊢ 𝑋 ∈ 𝑈 |
| 2 |
|
frege72.y |
⊢ 𝑌 ∈ 𝑉 |
| 3 |
2
|
frege58c |
⊢ ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) ) |
| 4 |
|
sbcim1 |
⊢ ( [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 → [ 𝑌 / 𝑧 ] 𝑧 ∈ 𝐴 ) ) |
| 5 |
|
sbcbr2g |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 ⦋ 𝑌 / 𝑧 ⦌ 𝑧 ) ) |
| 6 |
|
csbvarg |
⊢ ( 𝑌 ∈ 𝑉 → ⦋ 𝑌 / 𝑧 ⦌ 𝑧 = 𝑌 ) |
| 7 |
6
|
breq2d |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 𝑅 ⦋ 𝑌 / 𝑧 ⦌ 𝑧 ↔ 𝑋 𝑅 𝑌 ) ) |
| 8 |
5 7
|
bitrd |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 𝑌 ) ) |
| 9 |
2 8
|
ax-mp |
⊢ ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 𝑌 ) |
| 10 |
|
sbcel1v |
⊢ ( [ 𝑌 / 𝑧 ] 𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴 ) |
| 11 |
4 9 10
|
3imtr3g |
⊢ ( [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) |
| 12 |
3 11
|
syl |
⊢ ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) |
| 13 |
1
|
frege71 |
⊢ ( ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) → ( 𝑅 hereditary 𝐴 → ( 𝑋 ∈ 𝐴 → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( 𝑅 hereditary 𝐴 → ( 𝑋 ∈ 𝐴 → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) ) |