Metamath Proof Explorer


Theorem frege72

Description: If property A is hereditary in the R -sequence, if x has property A , and if y is a result of an application of the procedure R to x , then y has property A . Proposition 72 of Frege1879 p. 59. (Contributed by RP, 28-Mar-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege72.x 𝑋𝑈
frege72.y 𝑌𝑉
Assertion frege72 ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 frege72.x 𝑋𝑈
2 frege72.y 𝑌𝑉
3 2 frege58c ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) → [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧𝑧𝐴 ) )
4 sbcim1 ( [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧𝑧𝐴 ) → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧[ 𝑌 / 𝑧 ] 𝑧𝐴 ) )
5 sbcbr2g ( 𝑌𝑉 → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧𝑋 𝑅 𝑌 / 𝑧 𝑧 ) )
6 csbvarg ( 𝑌𝑉 𝑌 / 𝑧 𝑧 = 𝑌 )
7 6 breq2d ( 𝑌𝑉 → ( 𝑋 𝑅 𝑌 / 𝑧 𝑧𝑋 𝑅 𝑌 ) )
8 5 7 bitrd ( 𝑌𝑉 → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧𝑋 𝑅 𝑌 ) )
9 2 8 ax-mp ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧𝑋 𝑅 𝑌 )
10 sbcel1v ( [ 𝑌 / 𝑧 ] 𝑧𝐴𝑌𝐴 )
11 4 9 10 3imtr3g ( [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧𝑧𝐴 ) → ( 𝑋 𝑅 𝑌𝑌𝐴 ) )
12 3 11 syl ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) → ( 𝑋 𝑅 𝑌𝑌𝐴 ) )
13 1 frege71 ( ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝐴 ) → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) → ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) ) )
14 12 13 ax-mp ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 𝑅 𝑌𝑌𝐴 ) ) )