Step |
Hyp |
Ref |
Expression |
1 |
|
frege72.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege72.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
2
|
frege58c |
⊢ ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) ) |
4 |
|
sbcim1 |
⊢ ( [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 → [ 𝑌 / 𝑧 ] 𝑧 ∈ 𝐴 ) ) |
5 |
|
sbcbr2g |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 ⦋ 𝑌 / 𝑧 ⦌ 𝑧 ) ) |
6 |
|
csbvarg |
⊢ ( 𝑌 ∈ 𝑉 → ⦋ 𝑌 / 𝑧 ⦌ 𝑧 = 𝑌 ) |
7 |
6
|
breq2d |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 𝑅 ⦋ 𝑌 / 𝑧 ⦌ 𝑧 ↔ 𝑋 𝑅 𝑌 ) ) |
8 |
5 7
|
bitrd |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 𝑌 ) ) |
9 |
2 8
|
ax-mp |
⊢ ( [ 𝑌 / 𝑧 ] 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 𝑌 ) |
10 |
|
sbcel1v |
⊢ ( [ 𝑌 / 𝑧 ] 𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴 ) |
11 |
4 9 10
|
3imtr3g |
⊢ ( [ 𝑌 / 𝑧 ] ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) |
12 |
3 11
|
syl |
⊢ ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) |
13 |
1
|
frege71 |
⊢ ( ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) → ( 𝑅 hereditary 𝐴 → ( 𝑋 ∈ 𝐴 → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( 𝑅 hereditary 𝐴 → ( 𝑋 ∈ 𝐴 → ( 𝑋 𝑅 𝑌 → 𝑌 ∈ 𝐴 ) ) ) |