Metamath Proof Explorer


Theorem frlmfzowrd

Description: A vector of a module with indices from 0 to N - 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023)

Ref Expression
Hypotheses frlmfzowrd.w W = K freeLMod 0 ..^ N
frlmfzowrd.b B = Base W
frlmfzowrd.s S = Base K
Assertion frlmfzowrd X B X Word S

Proof

Step Hyp Ref Expression
1 frlmfzowrd.w W = K freeLMod 0 ..^ N
2 frlmfzowrd.b B = Base W
3 frlmfzowrd.s S = Base K
4 ovex 0 ..^ N V
5 1 3 2 frlmbasf 0 ..^ N V X B X : 0 ..^ N S
6 4 5 mpan X B X : 0 ..^ N S
7 iswrdi X : 0 ..^ N S X Word S
8 6 7 syl X B X Word S