Metamath Proof Explorer


Theorem frlmrcl

Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmval.f F=RfreeLModI
frlmrcl.b B=BaseF
Assertion frlmrcl XBRV

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 frlmrcl.b B=BaseF
3 df-frlm freeLMod=rV,iVrmi×ringLModr
4 3 reldmmpo ReldomfreeLMod
5 1 2 4 strov2rcl XBRV