Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmval.f | |
|
frlmrcl.b | |
||
Assertion | frlmrcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | |
|
2 | frlmrcl.b | |
|
3 | df-frlm | |
|
4 | 3 | reldmmpo | |
5 | 1 2 4 | strov2rcl | |