Metamath Proof Explorer


Definition df-frlm

Description: Define the function associating with a ring and a set the direct sum indexed by that set of copies of that ring regarded as a left module over itself. Recall from df-dsmm that an element of a direct sum has finitely many nonzero coordinates. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion df-frlm freeLMod=rV,iVrmi×ringLModr

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfrlm classfreeLMod
1 vr setvarr
2 cvv classV
3 vi setvari
4 1 cv setvarr
5 cdsmm classm
6 3 cv setvari
7 crglmod classringLMod
8 4 7 cfv classringLModr
9 8 csn classringLModr
10 6 9 cxp classi×ringLModr
11 4 10 5 co classrmi×ringLModr
12 1 3 2 2 11 cmpo classrV,iVrmi×ringLModr
13 0 12 wceq wfffreeLMod=rV,iVrmi×ringLModr