Metamath Proof Explorer


Definition df-dsmm

Description: The direct sum of a family of Abelian groups or left modules is the induced group structure on finite linear combinations of elements, here represented as functions with finite support. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Assertion df-dsmm m=sV,rVs𝑠r𝑠fxdomrBaserx|xdomr|fx0rxFin

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdsmm classm
1 vs setvars
2 cvv classV
3 vr setvarr
4 1 cv setvars
5 cprds class𝑠
6 3 cv setvarr
7 4 6 5 co classs𝑠r
8 cress class𝑠
9 vf setvarf
10 vx setvarx
11 6 cdm classdomr
12 cbs classBase
13 10 cv setvarx
14 13 6 cfv classrx
15 14 12 cfv classBaserx
16 10 11 15 cixp classxdomrBaserx
17 9 cv setvarf
18 13 17 cfv classfx
19 c0g class0𝑔
20 14 19 cfv class0rx
21 18 20 wne wfffx0rx
22 21 10 11 crab classxdomr|fx0rx
23 cfn classFin
24 22 23 wcel wffxdomr|fx0rxFin
25 24 9 16 crab classfxdomrBaserx|xdomr|fx0rxFin
26 7 25 8 co classs𝑠r𝑠fxdomrBaserx|xdomr|fx0rxFin
27 1 3 2 2 26 cmpo classsV,rVs𝑠r𝑠fxdomrBaserx|xdomr|fx0rxFin
28 0 27 wceq wffm=sV,rVs𝑠r𝑠fxdomrBaserx|xdomr|fx0rxFin