| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdsmm |
|- (+)m |
| 1 |
|
vs |
|- s |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vr |
|- r |
| 4 |
1
|
cv |
|- s |
| 5 |
|
cprds |
|- Xs_ |
| 6 |
3
|
cv |
|- r |
| 7 |
4 6 5
|
co |
|- ( s Xs_ r ) |
| 8 |
|
cress |
|- |`s |
| 9 |
|
vf |
|- f |
| 10 |
|
vx |
|- x |
| 11 |
6
|
cdm |
|- dom r |
| 12 |
|
cbs |
|- Base |
| 13 |
10
|
cv |
|- x |
| 14 |
13 6
|
cfv |
|- ( r ` x ) |
| 15 |
14 12
|
cfv |
|- ( Base ` ( r ` x ) ) |
| 16 |
10 11 15
|
cixp |
|- X_ x e. dom r ( Base ` ( r ` x ) ) |
| 17 |
9
|
cv |
|- f |
| 18 |
13 17
|
cfv |
|- ( f ` x ) |
| 19 |
|
c0g |
|- 0g |
| 20 |
14 19
|
cfv |
|- ( 0g ` ( r ` x ) ) |
| 21 |
18 20
|
wne |
|- ( f ` x ) =/= ( 0g ` ( r ` x ) ) |
| 22 |
21 10 11
|
crab |
|- { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } |
| 23 |
|
cfn |
|- Fin |
| 24 |
22 23
|
wcel |
|- { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin |
| 25 |
24 9 16
|
crab |
|- { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } |
| 26 |
7 25 8
|
co |
|- ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) |
| 27 |
1 3 2 2 26
|
cmpo |
|- ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |
| 28 |
0 27
|
wceq |
|- (+)m = ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |