| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdsmm |
⊢ ⊕m |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
1
|
cv |
⊢ 𝑠 |
| 5 |
|
cprds |
⊢ Xs |
| 6 |
3
|
cv |
⊢ 𝑟 |
| 7 |
4 6 5
|
co |
⊢ ( 𝑠 Xs 𝑟 ) |
| 8 |
|
cress |
⊢ ↾s |
| 9 |
|
vf |
⊢ 𝑓 |
| 10 |
|
vx |
⊢ 𝑥 |
| 11 |
6
|
cdm |
⊢ dom 𝑟 |
| 12 |
|
cbs |
⊢ Base |
| 13 |
10
|
cv |
⊢ 𝑥 |
| 14 |
13 6
|
cfv |
⊢ ( 𝑟 ‘ 𝑥 ) |
| 15 |
14 12
|
cfv |
⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 16 |
10 11 15
|
cixp |
⊢ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 17 |
9
|
cv |
⊢ 𝑓 |
| 18 |
13 17
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 19 |
|
c0g |
⊢ 0g |
| 20 |
14 19
|
cfv |
⊢ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 21 |
18 20
|
wne |
⊢ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 22 |
21 10 11
|
crab |
⊢ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } |
| 23 |
|
cfn |
⊢ Fin |
| 24 |
22 23
|
wcel |
⊢ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin |
| 25 |
24 9 16
|
crab |
⊢ { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } |
| 26 |
7 25 8
|
co |
⊢ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) |
| 27 |
1 3 2 2 26
|
cmpo |
⊢ ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) ) |
| 28 |
0 27
|
wceq |
⊢ ⊕m = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) ) |