Metamath Proof Explorer


Theorem frmdadd

Description: Value of the monoid operation of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses frmdbas.m M=freeMndI
frmdbas.b B=BaseM
frmdplusg.p +˙=+M
Assertion frmdadd XBYBX+˙Y=X++Y

Proof

Step Hyp Ref Expression
1 frmdbas.m M=freeMndI
2 frmdbas.b B=BaseM
3 frmdplusg.p +˙=+M
4 1 2 3 frmdplusg +˙=++B×B
5 4 oveqi X+˙Y=X++B×BY
6 ovres XBYBX++B×BY=X++Y
7 5 6 eqtrid XBYBX+˙Y=X++Y