Metamath Proof Explorer
Description: Value of the monoid operation of the free monoid construction.
(Contributed by Mario Carneiro, 27-Sep-2015)
|
|
Ref |
Expression |
|
Hypotheses |
frmdbas.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
|
|
frmdbas.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
|
|
frmdplusg.p |
⊢ + = ( +g ‘ 𝑀 ) |
|
Assertion |
frmdadd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ++ 𝑌 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
frmdbas.m |
⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) |
2 |
|
frmdbas.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
3 |
|
frmdplusg.p |
⊢ + = ( +g ‘ 𝑀 ) |
4 |
1 2 3
|
frmdplusg |
⊢ + = ( ++ ↾ ( 𝐵 × 𝐵 ) ) |
5 |
4
|
oveqi |
⊢ ( 𝑋 + 𝑌 ) = ( 𝑋 ( ++ ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) |
6 |
|
ovres |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( ++ ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) = ( 𝑋 ++ 𝑌 ) ) |
7 |
5 6
|
syl5eq |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ++ 𝑌 ) ) |