Metamath Proof Explorer
Description: Well-Founded Induction schema, using implicit substitution.
(Contributed by Scott Fenton, 24-Aug-2022)
|
|
Ref |
Expression |
|
Hypotheses |
frpoins2g.1 |
|
|
|
frpoins2g.3 |
|
|
Assertion |
frpoins2g |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
frpoins2g.1 |
|
2 |
|
frpoins2g.3 |
|
3 |
|
nfv |
|
4 |
1 3 2
|
frpoins2fg |
|