Metamath Proof Explorer


Theorem frsucmpt2

Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses frsucmpt2.1 F=recxVCAω
frsucmpt2.2 y=xE=C
frsucmpt2.3 y=FBE=D
Assertion frsucmpt2 BωDVFsucB=D

Proof

Step Hyp Ref Expression
1 frsucmpt2.1 F=recxVCAω
2 frsucmpt2.2 y=xE=C
3 frsucmpt2.3 y=FBE=D
4 nfcv _yA
5 nfcv _yB
6 nfcv _yD
7 2 cbvmptv yVE=xVC
8 rdgeq1 yVE=xVCrecyVEA=recxVCA
9 7 8 ax-mp recyVEA=recxVCA
10 9 reseq1i recyVEAω=recxVCAω
11 1 10 eqtr4i F=recyVEAω
12 4 5 6 11 3 frsucmpt BωDVFsucB=D