Metamath Proof Explorer


Theorem fvmpt3i

Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvmpt3.a x=AB=C
fvmpt3.b F=xDB
fvmpt3i.c BV
Assertion fvmpt3i ADFA=C

Proof

Step Hyp Ref Expression
1 fvmpt3.a x=AB=C
2 fvmpt3.b F=xDB
3 fvmpt3i.c BV
4 3 a1i xDBV
5 1 2 4 fvmpt3 ADFA=C