Metamath Proof Explorer


Theorem fvmptd2f

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017) (Proof shortened by AV, 19-Jan-2022)

Ref Expression
Hypotheses fvmptd2f.1 φAD
fvmptd2f.2 φx=ABV
fvmptd2f.3 φx=AFA=Bψ
fvmptd2f.4 _xF
fvmptd2f.5 xψ
Assertion fvmptd2f φF=xDBψ

Proof

Step Hyp Ref Expression
1 fvmptd2f.1 φAD
2 fvmptd2f.2 φx=ABV
3 fvmptd2f.3 φx=AFA=Bψ
4 fvmptd2f.4 _xF
5 fvmptd2f.5 xψ
6 nfv xφ
7 1 2 3 4 5 6 fvmptd3f φF=xDBψ